The Silent Prophets

Written on |

TAU researchers prove that silent mutations can predict development of cancer cells.

Our genome, our complete set of genetic instructions, contains mutations that can change the sequence of amino acids in the coded proteins. Since these proteins are responsible for the various cell mechanisms, such mutations are involved in turning healthy cells into cancer cells. In contrast, there are so-called ‘silent mutations’ that don’t change the sequence of amino acids in proteins. In recent years, it has been shown that silent mutations, both in and out of the cell’s genetic coding region, can affect gene expression, and may be associated with the development and spread of cancer cells. However, the question of whether silent mutations can help identify cancer types or predict patients’ chances of survival has never before been investigated with quantitative tools. Researchers from TAU’s Department of Biomedical Engineering and the Zimin Institute for Engineering Solutions Advancing Better Lives have been able to predict both the type of cancer and patients’ survival probability based on silent mutations in cancer genomes – a proof of concept that may well save lives in the future.

Predictive Power Similar to That of ‘Ordinary’ Mutations.

The groundbreaking study, led by Prof. Tamir Tuller and research student Tal Gutman, is based on about three million mutations from cancer genomes of 9,915 patients. The researchers attempted to identify the type of cancer and predict survival probability 10 years after the initial diagnosis – on the basis of silent mutations alone. They found that the predictive power of silent mutations is often similar to that of ‘ordinary’, non-silent mutations.

In addition, they discovered that by combining information from silent and non-silent mutations classification could be improved for 68% of the cancer types, and the best survival estimations could be obtained up to nine years after diagnosis. In some types of cancer classification was improved by up to 17%, while prognosis was improved by up to 5%. The findings of the study were recently published in NPJ Genomic Medicine.

Silent, Yet Making Noise

“‘Silent mutations’ have been ignored by researchers for many years,” explains Prof. Tuller. “In our study, about 10,000 cancer genomes of every type were analyzed, demonstrating for the first time that silent mutations do have diagnostic value – for identifying the type of cancer, as well as prognostic value – for predicting how long the patient is likely to survive.”

According to the professor, the cell’s genetic material holds two types of information: first, the sequence of amino acids to be produced, and second, when and how much to produce of each protein – namely regulation of the production process. “Even if they don’t change the structure of the protein, silent mutations can influence the process of protein production (gene expression), which is just as important. If a cell prodces much smaller quantities of a certain protein – it’s almost as though the protein has been eliminated altogether.”

 

“Another important aspect, which can also be affected by silent mutations, is the protein’s 3D folding, which impacts its functions: Proteins are long molecules usually consisting of many hundreds of amino acids, and their folding process begins when they are produced in the ribosome. Folding can be affected by the rate at which the protein is produced, which may in turn be affected by silent mutations.”

“Also, in some cases, silent mutations can impact a process called splicing, in which pieces of the genetic material are cut and rearranged to create the final sequence in the protein.”

Apparently, silent mutations can actually make a lot of noise, and Prof. Tuller and his colleagues were able to quantify their impact for the first time.

Saving as Many Lives as Possible

To test their hypothesis and quantify the effect of the silent mutations, the researchers used public genetic information about cancer genomes from the NIH in the USA. Applying machine learning techniques to this data, the team obtained predictions of the type of cancer and prognoses for patients’ survival – based on silent mutations alone. They then compared their results with real data from the database.

“The results of our study have several important implications,” says Prof. Tuller. “First of all, there is no doubt that by using silent mutations we can improve existing diagnostic and prognostic models. It should be noted that even a 17% improvement is very significant, because there are real people behind these numbers – sometimes even ourselves or our loved ones.”

“Doctors discovering metastases would like to know where they came from and how the disease has developed, in order to prescribe the best treatment. If, hypothetically, instead of giving wrong diagnoses and prognostics to five out of ten cancer patients, they only make mistakes in four out of ten cases, millions of lives may ultimately be saved. In addition, our results indicate that in many cases silent mutations can by themselves provide predictive power that is similar to that of non-silent mutations. These results are especially significant for a range of technologies currently under development, striving to diagnose cancer types based on DNA from malignant sources identified in simple blood tests. Since most of our DNA does not code for proteins, we may assume that most cancer DNA obtained from blood samples will contain silent mutations.”

The new study has implications for all areas of oncological research and treatment. Following this proof of concept, the researchers intend to establish a startup with Sanara Ventures, focusing on silent mutations as a diagnostic and prognostic tool.

related posts

Recruiting ‘Fighting Cells’ to Destroy Tumors

September 14, 2021

TAU Team Reverses Early Signs of Alzheimer’s

September 10, 2021

Nicotine Testing of Children Curbs Parents’ Smoking

September 5, 2021

Want to Fall in Love? Step Outside in The Sun

August 30, 2021

First 3D-bioprinting of entire active tumor

August 18, 2021

New Warning Sign for Breast Cancer

August 6, 2021

COVID-19 Immunity Varies Among Genders and Age Groups

July 25, 2021

New study found differences between women and men in the level of COVID-19 antibodies

July 15, 2021

A world first: Technology that restores the sense of touch in nerves damaged as a result of amputation or injury

July 15, 2021

New nanotech from TAU produces “healthy” electric current from the human body itself

July 9, 2021

Want to Live a Long Life? Consider Investing in Your Marriage.

July 2, 2021

A world first: Targeted delivery of therapeutic RNAs only to cancer cells, with no harm caused to healthy cells

June 30, 2021

Combating Antibiotic Resistance

June 22, 2021

Diamonds in the Rough

June 3, 2021

How Will We Brave the Post-COVID Era?

May 31, 2021

Are We Getting to the Root of Cancer?

May 3, 2021

Optical Technology Generates Immediate Melanoma Diagnosis

April 27, 2021

Gut Healing

April 25, 2021

Could Your Smartphone Be Damaging Your Teeth?

April 4, 2021

The Quest for A Lifesaving Cure

March 16, 2021

A Healthier Alternative to Antibiotics

February 24, 2021

Children with Autism during Lockdown: Serious Implications for Behavior and Development

February 22, 2021

Cancer Breakthrough: Cells’ Uniqueness is Also Weakness

January 29, 2021

TAU Scientists Develop Innovative Therapy to Prevent Deafness

December 28, 2020

Two TAU Professors Win 2020 Nature Mentoring Award

December 28, 2020

Lack of Teacher Support during Pandemic Causes Acute Emotional Harm

December 4, 2020

New Discovery: Development of the Inner Ear in Embryos is Similar to Crystal Formation

November 26, 2020

In First, Aging Stopped in Humans: TAU Co-Study

November 23, 2020

TAU developed genome editing system destroys cancer cells

November 20, 2020

TAU Co-Study: “Green Revolution” Decreased Infant Mortality

November 17, 2020

Study: Women Suffer More from COVID-related Orofacial Pain

November 12, 2020

Global First: Center for Combating Pandemics

October 22, 2020

TAU Researchers Discover Antibody Combo that Fights COVID-19

October 12, 2020

Researchers Identified the Genetic Causes of Inherited Hearing Loss in the Jewish Population of Israel

September 30, 2020

Targeting Melanoma

September 9, 2020

TAU Inaugurates Shmunis School of Biomedicine and Cancer Research

September 8, 2020

Physical exercise can help improve both physical and mental health

August 31, 2020

New school for Biomedicine and Cancer Research at Tel Aviv University

August 13, 2020

An Experimental Drug for Alzheimer’s May Help Children with Autism

August 5, 2020

TAU Study: Stimulating Immune System Prevents Post-Surgery Metastasis

July 27, 2020

TAU Researcher Fights Epidemics Both Viral and Virtual

July 23, 2020

TAU study: Oxygen therapy improves cognitive function in seniors

July 16, 2020

TAU-led Team Destroys Cancer Cells with Ultrasound

July 9, 2020

New nanomedicines for mRNA therapeutics in breast cancer and heart failure

July 6, 2020

3D printed heart used to test life-saving drugs

June 29, 2020

Did climate change cause infections 6,000 years ago?

May 21, 2020

Accurate 3D imaging could significantly improve IVF treatments

May 18, 2020

TAU study finds widespread misinterpretation of gene expression data

December 26, 2019

Fibroblasts involved in healing spur tumor growth in cancer

December 23, 2019

Eating in sync with biological clock could replace diabetes treatment

December 15, 2019
Ontario and Western Canada

3130 Bathurst Street, Suite, 214, Toronto, ON | M6A 2A1 
Phone: 416.787.9930 | Toll Free: 833.32.CFTAU (22328)
Email: toronto@cftau.ca

Ottawa, Quebec and Atlantic Canada

6900 Boulevard Décarie, Suite 3480, Montreal, QC | H3X 2T8
Phone: 514.344.3417
Email: montreal@cftau.ca


© CFTAU  | all rights reserved
Charitable registration: 124035643RR0001

TO TOP